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J. Phys. A :  Gen. Phys., Vol. 5 ,  February 1972. Printed in Great Britain 

Analytic continuation of hypergeometric functions 
by complex single loop Euler transforms 

D S F CROTHERSt 
Department of Physics, University College London, Gower St, London WC1, UK 

MS received 9 June 1971 

Abstract. The analytic continuation of,F,(a, b ;  1 ; z )  into the region Iz/ > 1 is derived by 
using a complex single loop Euler transform instead of the usual Mellin-Barnes transform. 
This facilitates a general application of Nordsieck's technique, for the evaluation of space 
integrals over a product of Coulomb wavefunctions, in which single-loop Euler transforms 
of the ,F,  functions lead to considerable topological simplification. Due attention is given 
to the necessary phase specifications. The method is also contrasted with the single-loop 
Euler-transform derivation of the asymptotic expansion of ,F,(b; 1 ; z) for Iz/ >> 1, which 
follows Mott and Massey. 

1. Analytic continuation of ,F, 

In one version of the Vainshtein theory for electron-atom collisions (Crothers 1967) we 
required the following specific contour integral : 

d t  1 ( 0 + , 1 + )  b 

J ( z )  = - p  [L) (1 - tz ) -"-  t 27ri t - 1  

for IzI > 1 and a, b nonintegral. The principal branch of (1 - tz ) - .  is assumed, while 
arg(t) = arg(t - 1) = 0 for any real t ~ ( 1 ,  +CO) defines the branch of { t / ( t -  1)lb. The 
cuts are shown in figure 1, the contour excluding z -  '. For IzI > 1, arg(z) = 0 is precluded 
by the prevailing geometry. For IzI < 1, the contour can always be sufficiently confined 
so that for all t on the contour, ltzl < 1 and (1 -tz)-' can be expanded in the usual 
binomial series IFo(a ; ; z) .  Then uniform convergence permits term-by-term integra- 
tion, using 

(b), =-  
n !  (3) 

where s = t -  and (b), is the Pochhammer symbol. Thus we have rapidly obtained the 
standard result that for 1zI < 1, J ( z )  is just the Euler integral representation of the Gauss 
hypergeometric function J , (a ,  b ;  1; z). This is not surprising in that J ( z )  results from 
the space integral of a plane wave and two confluent hypergeometric functions, both of 
which are represented by single-loop Euler transforms, which facilitates considerable 
t On leave of absence from Department of Applied Mathematics and Theoretical Physics, The Queen's 
University of Belfast. 
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topological simplification. The method is due to Nordsieck (1954). Now the analytic 
continuation of ,F,(a, b ;  1; z) to ( z (  > 1 is well known (cf Erdelyi et a1 1953), although 
it is often quoted in physics text books (cf Morse and Feshbach 1953 and Landau and 
Lifshitz 1958) in terms of some unspecified branches of (-z)-" and ( - z ) - ' .  It is given 
by the following convergent expression : 

T(b -a) 
r (b) r ( i  - a) 

(1 + P(a, b)) exp( f ani)z-" (4) 

where the + or - is taken according as arg(z) E (0, n] or [ -n, 0), the principal 
branches of z-" and z - ~  are taken and P(a, b) is the permutation operator interchanging 
a and b. According to Kampe de Fkriet (1937), Goursat (1881) was the first to establish 
(4) rigorously, Gauss and Kummer both having given the formula not without ambiguity. 

Figure 1. Contour for single-loop Euler transform representation of ,F,(a, b ;  1 : 2). 

A detailed proof using Mellin-Barnes transforms is given by Macrobert (1962), following 
Barnes (1908). It does follow immediately by the theory of analytic continuation that for 
IzI > 1, J(z) is indeed given by expression (4), which is the result obtained by Crothers 
(1966, 1967) in contrast to the result of Omidvar (1967). This result has also been 
obtained, for instance by Macrobert (1962, Appendix 2), using double-loop Euler 
transforms, which are however inappropriate to the Nordsieck method. We shall 
therefore derive the result (4) directly and rigorously from the single-loop representation 
given by (1). Such a method seems desirable, since, apart from elegance, there might 
arise the practical problem of evaluating integrals more complicated than J(z) but still 
containing (1 - tz)-". Coleman (1969), following Crothers (1967), has used conformal 
mappings to derive (4) directly from (1) in an heuristic manner, obscuring the difficulties 
concerned with contributions from different sections of the deformed branch cuts and 
arising from the apparent asymmetry of the Euler transform in a and b. These difficulties 
are overcome by the following simple approach. The branch cut of figure 1 along [0,1] 
may be deformed to pass through z - l ,  as indicated in figure 2, provided there is no 
change in the relative topology of the cuts and the contour. This requires that the lower 
part of the contour be pinched at z -  between the two cuts, a legitimate process provided 
Rea -= 0. For convenience of evaluation the upper part of the contour may be con- 
strained to touch the cut, joining 0 to 1, at z -  ' ,  so that everywhere on the section joining 
z-'  to 1 we have Itz( > 1. Then 

J(z) = J , + J ,  (5) 
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L !  , I i I=lzI-' 

Figure2. Contour of figure 1 but with cut and contour deformed to facilitate analytic 
continuation of J , (a .  b :  1 : z )  to /z /  > 1 

where 

sin(nb) - T(b)T( 1 - U) 
Z =- 

n 
and 

B(a, p)  is the beta function, arg(z) is restricted to either (0, n] or [ - n, 0) and the upper or 
lower sign taken respectively ; in equations (7) and (1 2) the principal branches of (1 - t)- ' 
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and tb are taken. In evaluating (7) we have assumed Re a < 0, Re b > 1 to ensure 
uniform convergence for term-by-term integration. However the condition on b for J 
may finally be relaxed by analytic continuation. Similarly in evaluating (12) we have 
assumed Re a < 0, Re b e 0;  again the condition on b for J, may be relaxed. We have 
also assumed that (b - a) is not a nonnegative integer, otherwise (14) is invalid and the 
usual logarithmic term arises. Using 

71 ( - 1 p  
sin(nc) T(m - c + 1) 

T(c - m) = - 

we obtain 

and since a, b and (a-b) are nonintegral using (16) with m = 0, the following identity 
may be verified : 

sin(nb) T(b)T( 1 - a) 
y( T(b+I-a)  T(l - b) 

T( 1 - a)r(a - b) exp( & bni)T(a - b) ) = T(a)T( 1 - b) 
+ exp( k ani) 

(18) 
whereupon (IO) and (17) yield the result (4), the condition Re a < 0 on which may be 
relaxed by analytic continuation. 

2. Asymptotic behaviour of ,F, 

It is interesting to consider the special case 

(19) 

which is of course convergent for all finite z. The analogue of (4) is the following 
asymptotic expansion : 

in which the same conventions hold as for expression (4). Evidently if arg(z) = 0 and 
IzI >> 1 the first term is exponentially dominant while the second term is subdominant. 
The usual Stokes phenomenon is thus clearly exhibited, the subdominant term changing 
discontinuously by a multiplicative factor of exp(2nbi) as the Stokes line is crossed in the 
positive sense. For arg(z) = f n and )zI >> 1 the second term is dominant and the first 
subdominant, changing discontinuously by a factor of exp( - 2nbi) as the Stokes line 
is crossed in the positive sense. It seems worthwhile stating these simple facts, since 
they are often omitted (cf Erdelyi et a1 1953, p 278). The usual Coulomb wavefunctions of 
scattering theory depend on the use of (20) on the anti-Stokes lines arg(z) = fn/2,  
upon which neither term is exponentially dominating for IzI >> 1 and both are single 
valued. 
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Now the second term of (20) is readily obtained from that of (4), but the first term is 
not so readily deduced. Of course, the result is well known but it is more satisfactory 
within the present context to obtain it directly from the limit of (l), namely the Euler 
transform 

which gives (19) upon expansion of exp(zt) and application of (3). In fact the required 
method is given by Mott and Massey (1965) but without the necessary phase specifica- 
tions. Putting u = zt, we then obtain 

where 

and 

(b),,(b),z-" sin(nb)r(b) 
= exp( fbni)z-b 1 

n = O  n!zr 

(22) 

The deformed contour used to evaluate (22) is shown in figure 3. The contributions 
from BC and DA, taken in the positive sense, are W, and W, respectively. The contribu- 
tions from CD and AB are nil, since exp( - CO) is zero. Expression (25) is clearly only 
asymptotic since Iv/zl > 1 holds for IuI > IzI, thus preventing convergence ofthe binomial 
series on sections of the contour. The contour integral in (25) is just the Hankel repre- 
sentation of the reciprocal of the gamma function, given that vb is the principal branch. 
Arg( - z) is restricted to ( -  71, + n), because we took 

(l-;) = - z x v - ' x  I--  ( :) 
and since arg( 1 - z/v)  E ( - n, + n) a priori, while arg( 1 - u/z) and arg(t.) E ( - z, + 71)  in 
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order to justify (25) and (26). Thus in (24) we intend the principal branch of z-b and the 
upper or lower sign of exp( h i )  according as arg(z) E (0, R ]  or [ - R,  0) respectively. 
Contour integral (29) is obtained from (28) by the mapping U = u + z .  Expression (30) 
follows from (29) as (27) does from (24), so that once again the principal branch of zb is 
intended. Thus finally the result (20) follows from (22), (27) and (30). It is also clear that 
expression (4) cannot be derived by this latter method, ultimately because z = CO is a 
regular singular point of ,F1 and an essential singularity of ,Fl , 

v=tcO 
arg v=O 

arg ( v - I  I =  0 
I 

Figure 3. Contour for single-loop Euler transform representation of ,F,(b; 1 ; z). but with 
cut and contour deformed to facilitate asymptotic expansion for ( z /  >> 1. 

Evidently the simple methods used here to evaluate expressions (1) and (21) for all z, 
may be extended to deal with more complicated integrands. No other simple extensions 
spring to mind which can not be obtained by parametric differentiation. However n fold 
complex single-loop Euler transforms would facilitate a unified treatment of Appell's 
hypergeometric function F,  and other higher generalized hypergeometric functions, 
in contrast with real transforms (Olsson 1967) which necessitate piece-meal analytic 
continuation obtained by other techniques. 

Acknowledgments 

Correspondence with Dr R Gayet is acknowledged. This research was supported in 
part by the US Advanced Research Projects Agency through the US Office of Naval 
Research, Contract No "14-69-C-0035. 

References 

Barnes E W 1908 Proc. Lond. Math. Soc. 6 141-77 
Coleman J P 1969 Case Studies in Aromic Collision Physics I eds E W McDaniel and M R C McDowell 

Crothers D S F 1966 PhD Thesis, The Queen's University of Belfast 
- 1967 Proc. Phys. Soc. 91 855-61 
Erdelyi A, Magnus W, Oberhettinger F and Tricomi F G 1953 Higher Transcendental Functions I (New York: 

Goursat E 1881 Ann. Sri. Er. Norm. 10 3-142 
Kampk de FCriet M J 1937 Mem Sri. Math. 85 1-85 
Landau L D and Lifshitz E M 1958 Quantum Mechanics (Oxford: Pergamon Press) p 502 
Macrobert T M 1962 Functions of a Complex Variable, 5th edn (London: Macmillan) p 151 

(London: North Holland) chap 3 

McGraw-Hill) 



262 D S F Crothers 

Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill) p 670 
Mott N F and Massey H S W 1965 The Theory of Atomic Collisions 3rd edn (London: Oxford University 

Nordsieck A 1954 Phys. Ret.. 93 785-7 
Olsson P 0 M 1967 Ark. Fys. 33 4 3 3 4 2  
Omidvar K 1967 Phys. Rec. Lett. 18 153-6 

Press) p 57 


